
Grocery Robot
CS 225 Fall 2020 Project

Gabriela Bravo-Illanes Max Farr Jeffrey Zhang

I. INTRODUCTION

The ”Grocery Robot” is a robot capable of navigating
through a grocery store, completing a shopping list, and taking
the items to the store’s checkout aisle. This type of robot could
be integrated into a delivery system, as a way to provide a
contact-free grocery shopping experience.

We are living in unprecedented times. COVID-19 is a virus
that spreads easily, and has killed more than 250,000 US
citizens. Social distancing is the best solution while we don’t
have a vaccine, but there are certain activities that nowadays
can’t be avoided, including grocery shopping. Although it is
possible to shop online, which avoids much of the interac-
tion required, there must still be another person picking up
the items, potentially spreading the disease or getting sick
themselves. This is the type of context in which contact-free
shopping technology becomes very useful.

The Grocery Robot consists of a Panda arm attached to a
mobile base, with a 2-finger gripper. Its actions are controlled
by two state machines: a higher level one that controls where
the robot should go and what object to pick/place, and a lower
level one that controls the pick and place actions. It makes use
of 3 different controllers:
• Navigation controller: controls the position of the base

of the robot while keeping the arm on at home position.
• Arm control in world coordinates: controls the whole

robot. Designed to reach objects placed in the world
• Arm control in base coordinates: Moves only the robot

arm while keeping the same position in the base. De-
signed to interact with objects static with respect to the
robot frame, in our case the basket.

Our environment consists primarily of four clusters of
shelves, each populated with one of three types of products:
cartons of milk, jars of jam, and boxes of pasta. We also
modeled a basket to transport the items, and a checkout
conveyor belt on the opposite end of the room to place the
basket on after shopping is complete.

II. FINAL IMPLEMENTATION.

A. State Machine

The higher level behaviour of our system is described by
the state machine shown in Fig. 1. The robot has a grocery
shopping list: it will go to the shelf where an object is located,
pick up the object, and place it in the basket located on
the robot. If there are more objects in the shopping list, the
robot will move to the appropriate shelf and repeat the same

operation. Once the robot has finished the entire list, it will
move to the checkout and place the basket on the conveyor
belt.

Go to shelf

Pick object
from shelf

Arrived

More items in
shopping list

Go to chekout
�nished

shopping list

Place basket in
conveyor belt

Arrived

Start

End

Fig. 1: High level state machine

To pick object from shelf and place basket in conveyor (Fig.
2), the robot uses a lower level state machine called “Pick and
Place”. In this state machine first the robot approach with the
arm a position near the object outside the shelf, then it orients
the end effector and start approaching slowly to the object.
Once the end effector makes contact with the object (detected
by a force sensor) the fingers will close and hold the object.
Then the robot will lift the object a few centimeters, retreat
the arm to get away from the shelf, and place the object in
the basket.

Bring arm
closer

Start

Orient arm

Reached position

Reached desired
orientation

Lift object

Approach the
object Touched object

Retreat

Place Object

End

Reached position

Reached position

Reached position

Fig. 2: High level state machine

To place the basket in the conveyor the steps are similar.
First the robot place it self above the basket, orient the end

Fig. 3: Grocery Shopping robot. The robot consisted on a
mobile platform and a panda arm with a 2 fingers gripper.
It has a surface where the basket can be placed.

effector, approach the basket until contact with the handle. Lift
the basket and place it on the conveyor belt.

B. Environment

We designed the aforementioned three products (milk, jam,
pasta) for our robot to pick up, as shown in Fig. 4.

Fig. 4: Products

Our simulation takes place in a “grocery store” comprised
of four walls, a floor, sixteen shelves, and a checkout conveyor
belt. The shelves are arranged into clusters of four, as shown
in Fig. 5.

Fig. 5: Top-down view of the store.

Each shelf consists of an empty shelf model and one of two
meshes to populate the shelf: either a mesh with all possible
locations filled, or one with a single product removed, as
shown in Fig. 6. These meshes are static, and the one with a
product removed allows us to place a physics-simulated copy
of the product in the empty space, which then allows us to
display a densely populated shelf of products without having
to simulate each and every object.

Fig. 6: Left: Full shelves. Right: Full shelf with a object
removed on the second level.

As discussed further in the Challenges section, the basket’s
collision mesh was hard for us to import as an .obj file. In
the final version of our project it is, in reality, four walls
and a single rectangular bar “floating” where the handle is
to approximate its shape. Similarly, the shelf’s collision mesh
is made up of a number of thin cubes which act as the different
levels of each shelf, and add an extra level of difficulty in that
we must pick up products without bumping adjacent levels of
a given shelf.

C. Controllers

The grocery robot can be represented by 12 links. The first 3
are links without length that represent the 3 degrees of freedom
(DOF) of the base qB = [q0, q1, q2] = [xB , yB , θB]. The next
7 links the links of the panda robot qarm = [q3, .., q9]. And
the last 2 links the gripper links qgrip = [q10, q11].

The total joint forces is the stack of the joint forces of the
base Fb, the arm Farm and gripper Fgrip:

F = [Fb, Farm, Fgrip]T

To compute this force, we have 3 different controller ex-
plained below 1:

1) Navigation: This controller controls the position of the
base of the robot qB,d = [x, y, θ] while keeping the robot arm
in “home” position.

qd =

[
qB,d

qarm,home

]
1Controllers do not include gravity compensation since this was performed

by the simulator

2

The torques of the joints are computed using the following
equations [

Fb

Farm

]
= M(−kvj q̇ − kpj(q − qd))

where M is the Kinetic energy matrix of the first 10 links.

2) Arm control in World coordinates: This controller is
needed to reach an object in the real world. This will move the
arm robot and the base when it is needed. The base movement
is necessary in order to reach an object in real world, otherwise
it could be possible that the position and orientation needed
to successfully grasp the object is not in the task space of the
arm. We have two options for our controller depending on the
goal: controlling only the position, or controlling the position
and orientation simultaneously.

• End effector position control[
Fb

Farm

]
= JT

v Λv (−kv(ẋ− νẋd)) +NM(−kvj q̇) (1)

where ν is a factor to limit the maximum speed to go
to the desired position. The desired speed ẋd and ν are
computed as:

ẋd = −kp
kv

(x− xd)

ν = sat
(
Vmax

ẋd

)
• End effector position and orientation control[

Fb

Farm

]
= J0Λ0

[
−kv(ẋ− νẋd)
−kpδφ− kvω

]
+N0M(−kvj q̇) (2)

Where δφ is the angle error between the desired and
current orientation computed as

δφ = −0.5

3∑
n=1

Ri × (Rd)i

where Ri and (Rd)i are the i-th columns of R and Rd

3) Arm control in base coordinates: This controller is
needed to interact with the basket above the robot, since it
is easier to describe this behaviour from the point of view of
the robot.

This controller was divided in two, one that computes the
needed toque in the base of the robot to maintain the same
position and one that moves only the arm. The controller
that moves the arm is given the desired position (xBd) and
orientation in base frame (RB

d) (frame attached to the base of
the panda robot) and transformed to world coordinates using
the following equation:

xd = Rz(θb)x
B
d + xB

Rd = Rz(θb)R
B
d

To compute the force of the arm joints (links 3 to 9)
(Farm) we apply similar controller than the ones expressed
on equations (1) and (2) but changing the following terms:

Jarm = J [0 : 3, 3 : 10]

Marm = M [3 : 10, 3 : 10]

Larm = (JarmM
−1
armJ

T
arm)−1

Narm = (I − JT
arm(M−1armJ

T
armLarm)T)

q̇arm = q̇[3 : 10]

This way
• Arm position control

Farm = JT
v,armΛv,arm (−kv(ẋ− νẋd)) +Nv,armMarm(−kvj q̇arm)

• Arm position and orientation control

Farm = J0,armΛ0,arm

[
−kv(ẋ− νẋd)
−kpδφ− kvω

]
+N0,armMarm(−kvj q̇arm)

To compute the joint forces of the base (Fb) required to
maintain its position we used the following equation:

Fb = Mb(−kvj q̇b − kpj(qb − qb,d))

where qb,d is the position of the base and
Mb = M [0 : 3, 0 : 3] is the mass matrix of the base
considering the inertial effect of the rest of the robot.

D. Gripper controller

This controller only controls the gripper joints; it will
always run in cooperation with the previous controllers.
• Open gripper:

Fgrip = −kvj q̇g − kpj(qg − qg,d)

where qg,d is the open position of the gripper.
• Close gripper:

Fgrip = Fg,d + (−kvj q̇g − kpj(qg − qg,d))

where qg,d is the position equivalent to the object width
and Fg,d the desired holding force.

E. Robot Arm Waypoints

Waypoints are used to move the robot arm such that
the trajectory is collision-free and is most advantageous for
grasping objects. When we pick up an object from the shelf,
we first move the gripper to the position that has an offset
normal to the object towards the middle of the aisle. This
enables the gripper to approach the object and subsequently
plunge into the shelf to retrieve it. After successfully grasping
the object, it then returns to the aforementioned waypoint.
To drop the objects into the basket, we have two additional
waypoints: the first one is defined at an elbow-up configuration
and the second one is defined directly above the basket. As
the gripper moves from to the first then second waypoint, it
will ensure that the none of the robot joints will collide with
the basket.

3

F. Navigation Waypoints Generation

To move to the correct location for the pick-up operation,
our robot must be able to plan a path between any location in
the store to the position of the shelf object. Fig. 7 below shows
a representation of the problem. The green triangle represents
the location that the robot (red circle) needs to reach to perform
the picking of the object from the shelf.

Fig. 7: Typical Setup of the Navigation Problem

Instead of using a traditional planning algorithm like A*, we
make one key observation to drastically simplify the problem:
any two points in a grid world like this where only horizontal
or vertical movements are allowed can be connected with
at most two additional “lattice points” to give an optimal
path. “Lattice points” are defined as the set of points that are
the intersections of the rows and columns of the map. The
observation is rather self-explanatory and we will not provide
a proof here.

Our algorithm separates this problem into three scenarios
that account for when zero, one or two are needed to com-
plete the optimal path. Algorithm[1] below defines our path
planning process. The function can see checks whether there
is a line-of-sight between two points.

We first check for the trivial case where the start and goal
are in direct line-of-sight, which will need no waypoints, as
shown in Fig. 8.

Fig. 8: Scenario 1: Zero Waypoints Needed

If there is no line of sight, we collect the set of lattice points
seen by start and goal respectively. There can be at most one
such point if start and goal don’t already have direct line-of-
sight. If there is a common lattice point that is seen, it will be
the only waypoint needed, as shown in Fig. 9.

Fig. 9: Scenario 1: One Waypoint Needed

If the first two cases fail, we arrive at the general case where
two waypoints are needed, as shown in Fig. 10. We then search
through the possible routes from start to goal given the lattice
points seen by start and goal respectively. The route that has
the minimum L1 distance will be selected.

Note that in general, robot and self offset locations will not
exactly align with the imaginary grid, and thresholds will need
to be adjusted for this algorithm to perform correctly.

Fig. 10: Scenario 3: Two Waypoints Needed

III. CHALLENGES

During the development of our project we faced the follow-
ing challenges:
• Confusion with the robot base frame: For the basket

controller we wanted to describe the dynamics of the
robot in the base frame of the Panda Arm. For a while
we tried to do this using the “Base frame” kinematics
of SAI2, but we weren’t getting the expected behaviour.
Later we realized that this “Base frame” is really respect
the “ground link” and not the base of the Panda Arm. We
opted to use a controller in world frame and transform the
position and orientation from base frame to world frame.

• Shelf and basket collision mesh: Since the shelf is not
a concave shape, we opted to create a “shelf.urdf” with
each level of the shelf modeled as a fixed link with a
thin cube as a collision mesh. Similarly the basket was
created as a “basket.urdf” file. The wall of the basket

4

Input: s (start), g (goal)
Output: waypoints
Function get_navigation_waypoints(s, g):

waypoints←− {g}
if can see(s,g) then

do nothing
else

foreach p ∈ lattice do
if can see(s,p) then

start sees list.append(p)
end
if can see(g,p) then

goal sees list.append(p)
end

end
p −→ start sees list ∩ goal sees list
if p 6= ∅ then

at most only one point in common
waypoints.insert(p,0)

else
need one more waypoint
dmin ←− 0
foreach p1 ∈ start sees list do

foreach p2 ∈ goal sees list do
if !can see(p1, p2) then

continue
end
d←− L1(s, p1, p2, g)
if d < dmin then

dmin ←− d
p1,min ←− p1

p2,min ←− p2

end
end

end
waypoints.insert(p2,min,0)
waypoints.insert(p1,min,0)

end
end
return wapoints

End Function
Algorithm 1: Algorithm for Navigation Path-Planning

where created using fixed links, and other 6 DOF where
added to allow the movement of the basket in the world.

• Control the base of the robot and the arm independently:
For navigation we wanted to move only the base, and
for movements in base frame we wanted to move only
the arm. To decouple this behaviour we created the
controllers described in the previous sections.

• SAI .obj rendering issues: For some reason, the way
we had our lights set up caused objects with textures
to render without shadows, which meant that complex
objects were rendered completely flat with no discernible
detail. Our solution was to leave simple objects (the
products, walls, and floor) as-is, and remove the textures
from the more complex objects (shelves and basket). This
way, products were still able to be aesthetically pleasing
without a significant loss in visual depth.

IV. RESULTS AND CONCLUSIONS

Simulation is an important part when developing robots in
order to test algorithms, state machines and controllers. This
can help us to test our ideas without the risk of damaging the
robot a person working with it. We learned how to implement
the controller saw in classes in a more complex context, how
to simulate force sensor and collision meshes, and how to
navigate using lattice points.

In the future we would like to test our algorithm using a
real robot, facing the challenges of how to retrieve sensors

information to estimate the position of the objects in the world,
as well as navigation in a real-world store environment.

V. LINKS

Video: https://youtu.be/f 2yzn A708
Repository: https://github.com/gbravoi/cs225 Grocery Team.git

VI. NOMENCLATURE
F Joint Force of the 12 joints of the robot
Fb Joint Force of the base links

Farm Joint Force of the panda arm links
Fgrip Joint Force of the gripper
Fg,d Desired holding force.
J0 Basic Jacobian associated with the end effector.
Jv Linear Motion Jacobian associated with the end effector.

kp, kpj Proportional constants of PD controller.
kv, kvj Derivative constants of PD controller.

Λ0 Operational space basic kinetic energy matrix associated with the end effector.
Λv Operational space linear motion kinetic energy matrix associated with the end effector.
M Kinetic Energy matrix
N Nullspace of Jv
N0 Nullapce of J0
ν Factor to limit maximum velocity.

Vmax Maximum linear velocity on the end effector
ω Angular velocity of the end effector.
δφ Orientation error
q Robot’s joint positions.
q̇ Robot’s joint velocity.
qB Joint angles that contains the base position and orientation [xb, yb, θb]
q̇B Speed of the base joint angles.
qB,d Desired position and orientation of the base

qarm,home Panda robot joints home position.
qg Gripper joints position
qg,d Desired gripper joints position
q̇g Speed of the gripper joints
R End effector orientation expressed as rotation matrix.
Rd Desired end effector orientation expressed as rotation matrix.
Rz(θ) Rotation matrix in z axis by θ angle.
θb Heading of the base of the robot
x Position of the end effector.
xd Desired position of the end effector.
xB position of the base of the panda robot ([xb, yb, zb]).
xd Desired position of the end effector.
ẋ Linear velocity on the end effector.
ẋd Desired velocity on the end effector.

5

https://youtu.be/f_2yzn_A708
https://github.com/gbravoi/cs225_Grocery_Team.git

	Introduction
	Final implementation.
	State Machine
	Environment
	Controllers
	Navigation
	Arm control in World coordinates
	Arm control in base coordinates

	Gripper controller
	Robot Arm Waypoints
	Navigation Waypoints Generation

	Challenges
	Results and conclusions
	Links
	Nomenclature

